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1. Abstract

The earthquake magnitudes whose values range between 7.1 and 8.0 (Petersen et al., 2008),
controlling ground motion levels in the New Madrid Seismic Zone have large uncertainties, and are based
on controversial magnitude estimates of the 1811-1812 earthquakes in the region. Improvements in our
knowledge of the historical sequence’s magnitudes and associated ground motions, made using large
scale simulations, offer an alternative to previous work on the seismic hazard at regional and city levels
by reducing uncertainties associated with the ground motion variability.

This project had the objective of providing improved estimates of the magnitudes of the three main
shocks of the sequence by using broadband simulations generated at sites with reported MMlIs, and
comparing MMI values derived from the simulations with the observed intensities. Our work builds on
the work of Ramirez-Guzman et al. (2015), who used 3D simulations out to distances of about 500 km.
We used 1D simulations out to 1,800 km to span the entire region over which MMI intensities were
reported.

We used the Southern California Earthquake Center (SCEC) Broadband Simulation Platform (BBP) to
perform the simulations. We used the Atkinson and Kaka (2007) and Dangkua and Cramer (2011) ground
motion intensity correlation equations to estimate MMI from the ground motion simulations so that they
could be compared with the observed intensities. We compared simulations of magnitude 7 earthquakes
with simulations of larger events. For the larger magnitudes, the NM1 scenarios (December 16, 1811) had
a magnitude of 7.7, the NM2 scenarios (January 23, 1812) had a magnitude of 7.4, and the NM3 scenarios
(February 7, 1812) had a magnitude of 7.6. Although there is a large degree of discrepancy between the
observed and simulated intensities, there is a slight preference for the larger magnitudes, which are
systematically higher than those described by Hough and Page (2011) and comparable to those reported
by Cramer and Boyd (2014).

The dispersion in the observed MMI intensity for NM3, the central thrust faulting event, is much larger in
the distance range of 200 to 1200 km than it is for the two strike-slip events (NM1 and NM2). Despite
this difference between the events in the observations, we do not see this difference between the events in
our simulations. Similarly, we do not see evidence for this difference between NM3 and NM1 in the
results of Ramirez-Guzman et al. (2015). We conclude that there may be factors influencing the observed
MMI intensities of the three events that our simulations are not modeling.



2. Introduction

According to some authors (e.g. Johnston, 1996), the 1811-1812 earthquakes are among the largest
events in any of the Stable Continental Regions (SCR) around the world, as defined by Kanter (1994).
Moreover, based on geological evidence (Tuttle et al., 2002), the number of damage and felt accounts,
and the extent of the large 1811-1812 sand blow field still visible today, support plausible scenarios of
very strong shaking with an average recurrence rate of 500 years in the area. Reports of this sequence of
earthquakes exist as far north as Canada, and they were documented extensively by the population of the
East Coast of the United States. These reports, together with the extensive area of liquefaction, landslides,
and changes in the geomorphology of the region, provide constraints for the study of the size of the three
main earthquakes.

Several research groups have studied the magnitude of these earthquakes. Nuttli (1973) made the first
magnitude estimates of the three main shocks, NM1 (December 16 1811), NM2 (January 23, 1812) and
NM3 (February 7, 1812), whose suggested locations are displayed in Figure 1.

Figure 1. New Madrid Seismic Zone, showing the location of the 1811-1812 sequence mainshocks.
Source: Ramirez-Guzman et al. (2015).

3. Reported Intensities

Nuttli’s (1973) early assessments of myy 7.1, 7.2 and 7.4 for NM1, NM2 and NM3, were based on the
recorded ground motion of the November 9, 1968, lllinois earthquake and other earthquakes in eastern
North America, together with the interpretation of newspaper reports of the severity of the earthquakes
throughout the Central Eastern United States (CEUS) using Modified Mercalli Intensity (MMI) values.
Later, Johnston (1996) obtained Mw values ranging from 7.8 to 8.1 based on an isoseismal approach to
interpreting MMI. Following Johnston’s (1996) method, Hough et al. (2000) re-examined the felt reports



and included a correction for site response. The analysis indicated lower magnitude values, from 7 to 7.5,
for the mainshocks. Bakun and Hopper (2004), using the method of Bakun and Wentworth (1997) and
Bakun et al. (2002) for MMI assignment, computed higher magnitudes, 7.5 to 7.8, than those reported by
Hough et al. (2000). In contrast to the isoseismal approach, the method used by Bakun and Wentworth
(1997) is based on individual intensity reports, which reduce the uncertainty of the estimation. More
recently, Hough and Page (2011) re-evaluated the Bakun et al (2004) work using MMI values interpreted
by four different experts using the attenuation models derived with the original Bakun and Hooper (2002)
MMI assignment procedure. The mean magnitudes were substantially lower than any previous
assessment, ranging from 6.8 to 7.2, which added to the debate about the seismic potential of the NMSZ.

We used the Hough and Page (2011) reported MMIs in this report. They reported intensities at 116 unique
stations for the three events NM1, NM2, NM3. The intensities were interpreted by four experts. A list of
these stations is provided in Table 1 and plotted in Figure 2. Observed intensities as reported by Hough
and Page (2011) are plotted in Figure 3. The MMI calculated from the average of four experts’
interpretations are used in this study, which is shown in the bottom row of Figure 3. Mueller et al. (2004)
associated the three historic events with different branches of the New Madrid fault by studying the
stress-field of different scenarios. Event NM1 is associated with the Cottonwood Grove fault, the southern
segment of New Madrid fault striking northeast. Event NM3 is associated with the west-dipping Reelfoot
fault, the central segment of the New Madrid fault. Location of NM2 is not certain as it is associated with
the northern segment of New Madrid fault and also with an area outside of the NMSZ (Mueller et al.
2004). The three branches of the New Madrid fault are shown in Figures 2 and 9, and their relevant
information is provided in Table 2.
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Figure 2. Stations (triangles) with MMI reported by Hough and Page (2011). Seismicity in the New
Madrid Zone is shown with red dots. Solid lines show the hypothetical location of New Madrid fault.



Table 1. List of unique stations with reported intensity.

No | Longitude ® | Latitude® | Vs30 (m/s) | No | Longitude ° | Latitude® | Vs30 (m/s) | No | Longitude © | Latitude® | Vs30 (m/s) | No | Longitude ® | Latitude® | Vs30 (m/s)
1 -72.69 41.76 224 31 -79.89 40.02 396 61 -83.15 39.51 278 91 -87.04 35.62 386
2 -72.93 41.3 267 32 -79.94 32.8 242 62 -83.24 33.09 317 92 -87.15 37.22 292
3 -73.71 43.32 280 33 -79.98 40.44 476 63 -83.24 42.31 191 93 -87.53 38.68 214
4 -73.81 40.69 228 34 -80.03 33.43 223 64 -83.42 36.02 396 94 -87.59 37.84 332
5 -74 40.73 238 35 -80.05 33 205 65 -83.57 35.87 359 95 -87.7 37.35 284
6 -74.17 40.74 325 36 -80.14 41.65 509 66 -83.74 38.64 475 96 -87.84 36.49 375
7 -75.16 39.95 266 37 -80.26 35.1 337 67 -83.81 38.61 187 97 -87.98 31.6 339
8 -75.18 40.04 303 38 -80.26 36.1 337 68 -83.84 39.93 279 98 -88.05 31.27 205
9 -75.49 4251 501 39 -80.4 36.3 347 69 -83.92 35.98 289 99 -88.33 37.22 399
10 -75.55 39.75 364 40 -80.67 32.43 243 70 -84 38.77 403 100 -88.45 37.22 355
11 -76.08 38.77 252 41 -80.72 40.06 405 71 -84.19 39.74 360 101 -88.69 37.14 290
12 -76.28 36.85 225 42 -80.94 32.59 263 72 -84.2 40.04 207 102 -88.79 36.16 246
13 -76.3 40.04 308 43 -81.04 34 373 73 -84.21 39.43 353 103 -89.24 36.62 180
14 -76.49 39.39 390 44 -81.09 32.06 262 74 -84.25 38.21 257 104 -89.42 37.31 213
15 -76.49 38.98 243 45 -81.46 39.42 383 75 -84.5 39.09 311 105 -89.52 37.31 362
16 -76.58 36.73 222 46 -81.47 34.84 257 76 -84.51 38.04 259 106 -89.99 38.55 254
17 -76.6 36.07 198 47 -81.61 34.28 293 77 -84.52 39.1 352 107 -90 35.83 184
18 -76.63 39.29 327 48 -81.86 40.27 280 78 -84.56 38.21 319 108 -90.02 37.95 358
19 -77.03 38.89 322 49 -81.98 36.71 358 79 -84.87 38.2 340 109 -90.07 29.97 344
20 -77.04 38.81 259 50 -81.99 33.47 292 80 -84.88 38.21 267 110 -90.22 38.63 315
21 -77.46 38.3 271 51 -82.01 39.94 351 81 -85.15 41.05 236 111 -90.38 38.23 361
22 -77.48 37.53 321 52 -82.02 345 280 82 -85.73 38.31 282 112 -91.3 31.58 226
23 -77.48 37.55 321 53 -82.26 39.95 325 83 -85.74 37.57 275 113 -91.4 31.56 454
24 -78.37 38.99 376 54 -82.56 35.59 416 84 -85.75 37.57 279 114 -92.03 38.55 278
25 -78.49 42.09 255 55 -82.6 39.71 247 85 -85.78 38.25 187 115 -92.2 38.5 369
26 -78.65 35.79 270 56 -82.95 39.59 245 86 -85.96 36.26 480 116 -93.1 31.76 272
27 -79.31 33.38 214 57 -82.99 39.33 479 87 -86.66 36.88 237

28 -79.42 43.77 267 58 -83.02 36.4 479 88 -86.78 36.17 329

29 -79.63 43.68 191 59 -83.02 40.09 378 89 -86.87 36.52 282

30 -79.88 40.02 396 60 -83.05 42.33 317 90 -86.89 36.85 286
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Figure 3. Observed intensities reported by Hough and Page (2011). The first, second and third columns
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show the data for the NM1 (December 16 1811), NM2 (January 23, 1812) and NM3 (February 7, 1812)

respectively. The first four rows show the interpreted intensity from each of four experts. The bottom row

shows the average intensity reported by the four experts.



3.1Intensity Decay with Distance

We used the Bakun and Hopper (2004) model 3 (BH04) and the Atkinson and Wald (2007) (AWO07)
models to assess the attenuation of intensities with distance. These models describe intensity as function
of distance and magnitude. Figure 4 shows the observed intensities for three events NM1 (top panel),
NM2 (middle panel), and NM3 (bottom panel) plotted against the median BHO4 (blue) and AWO7 (red)
attenuation models. Two magnitudes are considered for each attenuation model; a higher magnitude for
different segments of the fault and a magnitude 7.0 scenario used by the USGS (personal communication
with Robert Graves, 2015). We can see that the observed dispersion in MMI for NM3, the central thrust
faulting event, is much larger in the distance range of 200 to 1200 km than it is for the two strike-slip
events (NM1 and NM2). Figure 4 shows that AWO7 better describes the median decay of intensity with
distance for these three events. For this reason, we have selected the AWO07 attenuation model (equation
1) in the following analyses using the coefficient set for Central and Eastern United States (Atkinson and
Wald, 2007):

MMI =¢, +¢,(M —6)+¢,(M -6)* +c, logR+c,R+c,B+c,M logR

where R = +/D? + h? 1)

a_] O R<R
_{IogR/R R>R

3.2 Effect of site-conditions on the observed intensities

Hough and Page (2011) corrected their intensity estimates for site conditions. We checked their data for
possible remaining effects of local site amplification by inspecting the variation of the observed
intensities with the associated local time-averaged shear-wave velocity down to 30m (Vsso). For
estimating Vszo values, we used the method developed by Wald et al. (2004) and Wald and Allen (2007)
that derives seismic site conditions using topographic slope as a proxy. They correlated Vs
measurements against topographic slope and developed sets of coefficients for active tectonic and stable
continental regions. These coefficients have been applied to the continental U.S. by Wald and Allen
(2007), and in other regions around the world. The USGS website provides an online application where
Vs3o maps can be requested for an arbitrary geographical region. We used the estimated Vsz at the
location of the intensity observations.

To study the potential impact of site-conditions, we corrected the Hough and Page (2011) intensity
estimates for distance dependence using the AWO07 intensity attenuation equation. Then we studied the
trend of corrected intensities with Vsso. Residuals are defined as:

R = MMI — AW07 @)

where MMI is the observed intensity and AWO07 is the prediction of intensity using the Atkinson and
Wald (2007) intensity attenuation prediction equation. A positive residual means that the observed
intensity is higher than predicted and is potentially related to a lower Vsz.

Figure 5 shows the observed intensities (average of four experts) overlain on the contour plot of Vss.
Appendix A provides the same figures (Al through A3) of observed intensities for each expert, separately
overlain on Vs3o map for historic events NM1, NM2, and NM3.
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Figure 4. Observed intensities reported by Hough and Page (2011). Each panel represents the observed
intensities reported by four experts (grey circles, triangles, and crosses) and the average of the four
experts (blue circles) for three events; NM1 (top December 16 1811), NM2 (middle; January 23, 1812)
and NM3 (bottom; February 7, 1812). Observed intensities are plotted against BH04 (blue) and AWOQ7
(red) attenuation models. Two magnitudes are considered for each attenuation model; a larger magnitude
7.7,7.4,and 7.6 for events NM1 through NM3 (solid) and a magnitude 7.0 (dashed).
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Figure 5. The average of intensity measures
from four experts is overlain on Vsz data in
CEUS. Plots (a), (b), and (c) are associated with
the NM1, NM2, and NM3 historic events. The
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Allen (2007) method, which is available as a
web application from the USGS.
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Figures 6 through 8 show the intensity residuals (Equation 2) plotted versus Vss, and also plotted on a
map for the average of the four intensity estimates. Vsz, data were independently inspected for any sign of
regional correlation with distance, to assess the potential presence of a broad regional trend of site
amplification, e.g. decreasing away from the New Madrid earthquakes, which all occurred within the
Mississippi Embayment. We did not find any trend of decreasing residuals with increasing Vszo or of Vssg
increasing with increasing distance from the NMSZ. Based on this residual analysis, we conclude that
Hough and Page (2011) have effectively accounted for the effects of local soil conditions on the
intensities.
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Figure 6. (a) Intensity residuals for NM1 with respect to
the AWO07 equation plotted versus Vsz. Color coding
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inspected for any potential trend versus distance. (c) The
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Figure 7. (a) Intensity residuals for NM2 with respect to
the AWO07 equation plotted versus Vsz. Color coding
represents the station distance to the fault center (blue
for closest and red for the farthest. (b) Vs of stations are
inspected for any potential trend versus distance. (c) The
residuals are plotted in a map where color coding shows
the residual value (blue represents lowest and red
represents highest value).
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4. Estimation of Intensities from Simulations

We used the Graves and Pitarka (2010) method, as implemented in the SCEC Broadband Simulation
Platform (Maechling et al., 2015; BBP) to simulate 1D ground motions. We then converted selected
ground motion intensity measures to Modified Mercalli Intensity (MMI) using appropriate conversion
equations. The selected PGA, PGV, and spectral response at different periods were converted to MMI
estimates using the Dangkua and Cramer (2011) and Atkinson and Kaka (2007) ground motion - intensity
correlation equations (GMICEs). We refer to these two GMICEs as DC11 and AKO7. The observed
intensities together with the converted intensity values derived from simulations for a set of probable
rupture scenarios are used to estimate the most likely earthquake magnitudes of the 1811-1812 NMSZ
sequence.

To gain insight into the variability of the intensity patterns associated with different rupture scenarios for
each of the three main events, we used a suite of scenarios that spans different magnitudes, hypocenters,
and fault geometries. Considering the stochastic nature of the kinematic rupture model, we repeated nine
simulations for a fixed magnitude, hypocenter, and fault geometry to assess the sensitivity of ground
motion parameters to the stochasticity in the source model as well. We used two GMICEs, each with five
different ground motion parameters to predict the intensity. The combination of different hypocenter
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location, fault geometry, magnitude, and type of GMICE, provides an opportunity to study the variability
of predicted intensities. The following sections provide the details used in the ground motion simulation
process and intensity prediction equations.

4.1 Modeling of the New Madrid Fault Zone

Figure 9 shows the fault orientation considered for the 1811-12 earthquakes originally developed
by Ramirez-Guzman et al. (2015) along with the seismicity in the New Madrid Seismic Zone. These
geometries are similar to those proposed by Macpherson et al. (2010). For each fault there are two
magnitudes assigned where the larger magnitude is similar to those used in the USGS National Seismic
Hazard Maps, and the lower magnitude is equal to 7. Table 2 provides the fault parameters for three
branches of the New Madrid fault shown in the Figure 9.

Table 2. Fault parameters for the 1811-1812 New Madrid scenarios, from Robert Graves (personal
communication, 2014).

Top Center
Segment | Longitude | Latitude Eegllol Length | Width | Strike Dip AIVKZfeg ) Mw
(km) (km) | (degree) | (degree)
(degree) | (degree) | (km) (degree)
Southwest | -90.0273 | 35.9036 0 140 22 229 90 180 7.7
(NMI) -89.8579 | 36.023 4 60 11 229 90 180 7.0
Central -89.383 | 36.3386 3 60 40 162 38.7 90 7.6
(NM3) -89.4644 | 36.4356 3 30 22 162 38.7 90 7.0
Northeast | -89.4296 | 36.826 0 70 22 207 90 180 7.4
(NM2) -89.5069 | 36.7036 1 40 15 207 90 180 7.0
37N

90 W 89 W

Figure 9. New Madrid region showing the surface projection of six proposed fault models for the 1811-
1812 earthquakes. The black lines correspond to faults with the larger magnitude scenarios, whereas
green lines to magnitude 7 scenarios. Background seismicity is shown in red.
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The moment magnitude for each scenario in Table 2 is based on the Leonard (2010) magnitude-rupture
area relationship developed for stable continental regions. The average rise time on the fault is calculated
using the following relationship from Somerville et al. (2001) in which My is the seismic moment:

1
T, =3.75x10°M¢ 3)

4.2 Kinematic rupture models

There is little knowledge available regarding the 1811-12 New Madrid hypocenter location and
distributions of slip on the fault. The near-source ground motion levels for large magnitude events are
sensitive to the hypocenter location, particularly for the low frequencies (< 1Hz). The hypocenter location
and selected magnitudes (as provided in Table 2) that we used to create our kinematic rupture models
were recommended by Robert Graves (personal communication, 2015). Recommendations for higher
magnitudes include three hypocenter locations for the Southwest segment, and two hypocenter locations
for the Central and Northeast segments. For the magnitude 7, single hypocenter locations for the
Southwest, Northeast, and the Central Segments are considered. This combination of hypocenters leads to
ten scenarios for which we generated kinematic rupture models. The ten scenarios are listed in Table 3
and shown in Appendix B. The kinematic rupture model of a magnitude 7.6 scenario (scenario #1 in the
Table 3) on the central segment (NM3) is shown as an example in Figure 10. Nine realizations were
generated for each scenario except for Scenario #6 for which we generated eight realizations.

Table 3. Ten scenarios used in simulations

Fault  Magnitude Length  Width  Hypocenter Along Hypocenter

Scenario  gooment My (km) (km) Strike (km)* Along Dip (km)*
1 Central 7.6 60 40 12 23
2 Central 7.6 60 40 -12 23
3 Central 7.0 30 22 0 16
4 Northern 7.4 70 22 -15 15
5 Northern 7.4 70 22 15 15
6 Northern 7.0 40 15 0 7.5
7 Southern 7.7 140 22 -55 15
8 Southern 7.7 140 22 0 15
9 Southern 7.7 140 22 55 15

10 Southern 7.0 40 15 0 8

* measured from top center of the fault segment defined in Table 3
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Figure 10. Kinematic rupture model developed for Central branch of New Madrid fault with M
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4.3Ground Motion Simulation Technique

Simulations are performed using the Graves and Pitarka (2010) method as implemented in the SCEC BBP
at each location with intensity observations reported by Hough and Page (2011). The execution of the
code was performed at the University of Southern California high performance computing system.

The implementation of the Graves and Pitarka (2010) method in the BBP enables the user to generate a
finite-fault kinematic rupture model. The procedure then computes low frequency and high frequency
synthetic time series which are combined together using a matched filter technique. Finite-fault rupture
models in our study are generated for several fault models for each of the three branches of the New
Madrid fault rupture, as described in Table 3. Each source model contains slip history information for
each sub fault including total slip, rise time, and rake which together form the source time function of that
sub fault. For the simulation of the low frequency portion of the ground motions, theoretical Green’s
functions (GFs) are pre-calculated for the required source-to-site distances and depths. Green’s functions
are generated using a representative 1D velocity model for the CEUS region, which is provided in the
BBP package. The distance range for which CEUS GFs are computed in the standard release of the BBP
package goes up to a distance of 1200 km. For the purpose of this study we computed additional Green’s
functions out to a distance of 1800 km in order to encompass all of the MMI intensity observations, while
recognizing the large uncertainty involved in simulating ground motions out to this distance with a simple
1D seismic velocity model. A total of eight GFs corresponding to three different focal mechanisms (Wang
and Herrmann, 1980) were generated for the distance range 1000 to 1800 km, every 10 km, and added to
the BBP package. The additional GFs were generated with the wavenumber integration technique using
Computer Programs in Seismology, a software package developed by Robert Herrmann at St. Louis
University. These Greens functions are valid up to the Nyquist frequency of the simulations. They include
all direct and scattered body waves and surface waves for a horizontally layered Earth model. The
simulated wave-fields include both near and far field components. The velocity model used for computing
the additional GFs is provided in Table 4. Figure 11 shows eight Green’s functions generated at 1200 and
1500 km. The GFs naming convention used in Figure 11 is described in Wang and Herrmann (1980).
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Table 4. Velocity model for Central Eastern United States used in BBP (version 15.3.0) for simulation
using the Graves and Pitarka method.

Thickness Vp Vs Density

# (km) kms)  (kmis)  (gec) 2 Qs

1 00307 173 1 20306 10 10

2 0014 26832 1551 21408 3551 3551
3 00553 31192 1803 22766 3803  38.03
4 1833 5.19 3 26111 500 500

5 0895 5577 3224 2665 500 500

6 2172 5828 3360 27 1500 1500
7 215 6176 357 27568 2900 2900
8 75 618 357 27248 2900 2900
9 11 636 368 27811 2900 2900
10 8 712 412 3086 2900 2900
11 1 715 413 3052 2900 2900
12 12 726 42 30043 2900 2900
13 0.85 764 442 32331 2900 2900
14 0.2 797 461 33533 2900 2900
15 10 812 469 34059 2900 2900
16 10 835 47 34489 2900 2900
17 10 84 476 34775 2900 2900
18 10 841 478 34859 2900 2900
19 10 842 479 34909 2900 2900
20 10 842 481 34976 2900 2900
21 10 842 483 35043 2900 2900
22 10 842 485 35100 2900 2900
23 Halfspace 843 487 35193 2000 2900

17
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Figure 11. Green’s functions at 1200 km (top) and 1500 km (bottom).

The high frequency simulation approach is based on a method formalized by Boore (1983). Its application
to finite-fault simulations is described by many authors such as Frankel (1995), Beresnev and Atkinson
(1997), and Hartzell et al. (1999). Details of the method that we used are described in Graves and Pitarka
(2010). All methods for combining low and high frequency simulations into a broadband time series use
some type of filtering and summation. The BBP package uses a set of “matched” 4™ order zero-phase
Butterworth filters are used each with a corner frequency equal to 1Hz to combine the low and high
frequencies.

We calibrated the parameters for CEUS simulations with results produced by Robert Graves for the same
region (personal communication, 2016), and the work of Pezeshk et al. (2011) and Atkinson and Boore
(2006). The BBP requires input parameters for both the low frequency and high frequency components of
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the simulations. We selected appropriate values for these parameters based on the region, and our past
experience with simulations in the CEUS. The default parameters in the BBP software package were
modified according to Table 5.

As a code validation exercise, we repeated simulations for a CEUS scenario previously studied by Robert
Graves (personal communication, 2015). Figures 12 and 13 show a comparison of the Fourier amplitude
spectra between our simulations and those from Robert Graves at multiple stations (personal
communication, 2015). In the simulations shown in Figure 12, the source rupture model from scenario 1,
realization 9 (bottom row of plots at Figure 10) is used. Our simulation results are in fair agreement with
those of Robert Graves as shown in Figure 14.

Figure 15 shows the simulated PGA versus distance for both horizontal components (shown with circle
and cross), compared with median values from the PZT11 and AB06 GMPEs. It includes the ten
scenarios shown in Figure 10, and Appendix B1 through B9. Figures 16, 17, and 18 show the simulated
and empirical 5% damped response spectral accelerations at 0.3, 1, and 2 s. In Figures 15 through 18,
PZT11 is based on National Earthquake Hazards Reduction Program site class A, Vs > 2000 m/s and
ABO6 is calculated for rock site-conditions.

The simulated PGAs generally fall below the median GMPE predictions, especially at distances beyond
200km. There is closer agreement to the median GMPE values for longer response spectral amplitudes.
This suggests that the low frequency component of the simulation better represents the expected ground
motion in the CEUS, while the high frequency component might need additional calibration. In particular,
the high frequency component does not appear to adequately replicate the flattening in the rate of
attenuation between about 70 and 200 km in the GMPEs that is caused by critical reflections in the lower
crust. Additional adjustments using different regional quality factors and different local kappa values
based on geology may be required. Techniques for estimating kappa and quality factor are available
(Hosseini et al. 2015) and could be applied in different regions in the CEUS.

Table 5. Graves and Pitarka simulation method parameter values used in the simulations.

Parameter Name Value Parameter Name Value
Kappa 0.03 | RISETIME FAC 1
QFEXP 0.45 | DEEP_RISETIME FAC 1
Co 164 | RVFRAC 0.8
Cl 34 | SHAL RVFAC 1
SDROP 143 | DEEP_RVFAC 1
DEFAULT _FCFAC -0.4625 | PATH DUR MODEL 2
RAYSET [2,1,2] RVSIG 0
RISETIME COEF 3.75 | VSMOHO 4.69
SHAL VRUP 0.7
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Figure 14. Calibration of our simulations with those from Robert Graves (RWG): PGA attenuation with
distance.

Although limited to distances up to 180 km, the same trends are seen in the results obtained by Ramirez et
al. (2015), as shown in Figure 19, even though Ramirez et al. (2015) used 3D simulations and ours are
1D. The flattening in attenuation is not evident in the PGA simulations, but it is evident in the simulations
for response spectral acceleration at 2 seconds period, consistent with our results.

In view of the lack of a 3D seismic velocity of the entire region for which there are observed MMI
intensities of the New Madrid earthquakes, and the large distance this region spans, it was impractical for
us to use a 3D velocity model in our simulations, so we had to use 1D simulations. On the other hand, a
3D simulation of ground motion considers the effects of basins realistically and can better simulate the
near fault effects. The near fault effects are strongly dependent on the slip and finite fault characteristics
and they are not so important in the far field, so a 3D simulation can give a better outcome for the near
fault stations which might improve the results. We are interested to use 3D ground motion simulation
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technique in the future, when the USGS 3D velocity model covers a larger area in CEUS and source
characteristics are better constrained.
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Figure 19. Left: Simulated PGV for an Mw 7.6 NM3 event. Right: Comparison of simulated PGV, PGA
and 2 second spectral acceleration using the Graves and Pitarka method with the Pezeshk et al. (2011)
GMPE. The flattening in attenuation is not evident in the PGA simulations, but it is evident in the
simulations for response spectral acceleration at 2 seconds period. (Source: Ramirez-Guzman et al.,
2015).

4.4 Estimation of Intensities from Ground Motion Simulations

MMIs can be estimated from several ground motion parameters such as peak ground acceleration (PGA),
peak ground velocity (PGV), and spectral acceleration (SA) at various periods. PGV is ideal because it is
the most readily available parameter from some seismographic networks and is most directly related to
kinetic energy (Kaka and Atkinson, 2004). Only the horizontal components of the synthetics were
converted to MMI. Considering the special attributes of ground motion propagation in the CUS and ENA
we used the Atkinson and Kaka (2007) and Dangkua and Cramer (2011) empirical relations to convert the
selected intensity measures to MMI. We refer to these GMICEs as AKO7 and DC11 throughout this
report. The geometric mean of the two horizontal components was used as input into these GMICEs.
AKO7 can be used to estimate the intensities using the ground motion intensity measure alone, or along
with magnitude and distance. DC11 estimates the intensity based on the ground motion intensity measure,
the earthquake magnitude and station distance. We did not use magnitude as an input parameter in the
AKO7 GMICE because magnitude is an unknown parameter that we are seeking to estimate; instead we
used the magnitude-independent version of that GMICE.
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4.5 Comparison of Simulation-Based and Observed Intensities

Examples of the results showing the comparison between observed and simulated intensities, and their
residual distribution against distance, are given for four different spectral periods in Figures 20 through
27. These figures, which display DC11 for PGA, AKOQ7 for PGV, and DC11 for T=1.0 sec and AK07 for
T = 2.0 sec Sa, exhibit the best fit between the simulations and the observations. The complete set of
results, showing simulated intensities calculated using the two GMICEs for each of several ground
motion intensity measures, is provided in Appendix C.

To quantify the misfit between our simulated intensities, and those from observations and GMPEs, we
calculated the root mean square (RMS) error for each intensity measure used as input to GMICE (PGA,
PGV, SA at 0.3 s, SA at 1.0 s, SA at 2.0 s), and GMICE model (AKO7 and DC11). The RMS errors are
calculated from the residuals between observed and simulated intensities (type 1 RMS error, E;, in odd
numbered Figures 21 through 27 and even numbered Figures C2 through C12) and from the residuals
between observed intensities and those predictions from the AWO07 attenuation equation (type 2 RMS
error, E;) RMS error values are normalized by the number of observations to be appropriate for a direct
comparison. The results are shown in Table 6 for the AKO7 GMICE and in Table 7 for the DC11 GMICE.

The results for the five parameters through which MMI is calculated shown in Figures 20 through 27 are
highlighted in Tables 6 and 7, with the best fitting scenarios shown in green. Best fitting scenarios are
selected using the minimum average error of GMICE input parameters for each historic event. Average
error is calculated for each scenario over five E; errors from different GMICE input parameters. For the
average of all simulated intensity measures, the best fitting scenario earthquakes are 2 (Mw 7.6 for NM3),
4 or5 (Mw 7.4 for NM2), and 7 or 9 (Mw 7.7 for NM1). The aggregate of the error analysis leads to Mw
7.7 for NM1, Mw 7.4 for NM2, and Mw 7.6 for NM3. Although there is a large degree of discrepancy
between the observed and simulated intensities, there is a slight preference for the larger magnitudes,
which are systematically higher than those described by Hough and Page (2011) and comparable to those
estimated by Cramer and Boyd (2014). The RMS errors for NM3 are significantly larger than those of
NM1 and NM2, reflecting the larger dispersion in the observed MMI intensities of NM3 as already noted.
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Figure 21. Residuals associated with Figure 20 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWQ7 attenuation model (E,).
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Figure 22. Converted MMI values for Scenarios 1 through 10 using simulated PGVs and the AKO7
GMICE where magnitude is considered unknown. The average and one standard deviation of the
converted MMI values for the geometric mean of the two horizontal components are calculated at each
site over multiple source realizations and shown with filled circle and vertical bars. The empirical MMI
values using the AW07 GMPE plus and minus one standard deviation are shown with solid and dashed
lines. The observed MM s for the three New Madrid events are plotted in magenta, green, and black. The
vertical bars in the observations correspond to the standard deviation of the average (as interpreted by the
four experts) MMI values.
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Figure 23. Residuals associated with Figure 22 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWO07 attenuation model (E,).

31



Segnario | Soemrin 2

Neenarig 3

Olbmcrged. 2410
n A ket

R

e =
e
—o—
-

| EX
RYRATE
- o
o

e
=

. 5 P Z
-@.‘. s -y ___:‘
s LA X Xi
[ [ 4
| | L
m it 15 lit 15
Ptz istarce Chind Bt Distnee thin Tenprure Dz thiznt

Neenario 3 Seenario 5 Svenari b

Dbl ¥A12 Elbarad, WA Dbecrrl, 312

. S Predicnae . * BAIL Prod viiue & 5l Predoen
14 AT Pradicion n AW Fahenm - AWAT Badicnen
. EXY R - AW s AWl
E P’ M
= %3 . = % R = ¢
= . &+ ; - . = . .’ . - o0
= LL ; . = *ta =
SRt Y e Wy
4 » b J k3 4
T
. . | ) e M
I 10 1% e
Buprure Mearee thiny Foaprene Dt than
Seendrio 7 Seenario §
Olvaris), N80 L dhened, WML
o8I Predicln * S s Prod-oe
1 . AT Fradicran o AWIT Pradition -
ANWIT :oand . AT e
LR B}

pARTII
—p— .
Pty

M
—fp— e

-

AN
—

K It s K I S G
Ruplurs skarss g B e Phstanee 1 Rupzune Thesange 1kl
Keenario 10

SI1
. E -

Waptn: Dstan:

Figure 24. Converted MMI values for Scenarios 1 through 10 using simulated 1.0 s spectral accelerations
and the DC11 GMICE. The average and one standard deviation of the converted MMI values for the
geometric mean of the two horizontal components are calculated at each site over multiple source
realizations and shown with filled circle and vertical bars. The empirical MMI values using the AW07
GMPE plus and minus one standard deviation are shown with solid and dashed lines. The observed MMIs
for the three New Madrid events are plotted in magenta, green, and black. The vertical bars in the
observations correspond to the standard deviation of the average (as interpreted by the four experts) MMI
values.
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Figure 25. Residuals associated with Figure 24 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWO7 attenuation model (E,).
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Figure 26. Converted MMI values for Scenarios 1 through 10 using simulated 2.0 s spectral accelerations
and the AKO7 GMICE where magnitude is considered unknown. The average and one standard deviation
of the converted MMI values for the geometric mean of the two horizontal components are calculated at
each site over multiple source realizations and shown with filled circle and vertical bars. The empirical
MMI values using the AWO07 GMPE plus and minus one standard deviation are shown with solid and
dashed lines. The observed MMIs for the three New Madrid events are plotted in magenta, green, and
black. The vertical bars in the observations correspond to the standard deviation of the average (as
interpreted by the four experts) MMI values.
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Figure 27. Residuals associated with Figure 26 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWO7 attenuation model (E,).

35



Table 6. The RMS error between observed and simulated intensities using the AKO7 GMICE. Minimum
errors are marked in green.

2 . Atkinson and Kaka (2007) - AKO7

% Fault Eveilnt My Lekngth V\lf(ldth A A SA

3 | Segment | Code (km) | (km) | PGA | PGV 033) | (1.05) | @08 | Mean
1 7.6 60 40 ] 0.3295 | 0.1566 | 0.3455 | 0.2314 | 0.1609 | 0.2576
2 | Central | NM3 | 7.6 60 40 | 0.3218 | 0.1560 | 0.3380 | 0.2283 | 0.1650 | 0.2536
3 7.0 30 22 10.3837 | 0.2001 | 0.3969 | 0.2629 | 0.1983 | 0.3011
4 7.4 70 22 10.2396 | 0.1059 | 0.2563 | 0.1489 | 0.1056 | 0.1831
5 | Northern | NM2 | 7.4 70 22 1 0.2333 | 0.1067 | 0.2497 | 0.1433 | 0.1044 | 0.1787
6 7.0 40 15 |10.2806 | 0.1188 | 0.2957 | 0.1680 | 0.1125 | 0.2103
7 7.7 140 22 10.2166 | 0.1071 | 0.2274 | 0.1490 | 0.1030 | 0.1691
8 Southern | NMI 7.7 140 22 [0.2026 | 0.1326 | 0.2146 | 0.1396 | 0.1071 | 0.1647
9 7.7 140 22 | 0.2043 | 0.1247 | 0.2171 | 0.1393 | 0.1074 | 0.1645
10 7.0 40 15 10.2507 | 0.1221 | 0.2614 | 0.1609 | 0.1167 | 0.1927

Table 7. The RMS error between observed and simulated intensities using the DC11 GMICE. Minimum
errors are marked in green.

2 . Donguka and Cramer (2011) - DC11

3 Fault Event My Length | Width SA <A SA

% Segment | Code (km) (km) | PGA PGV 035) | 1.0s) | 2.05) Mean
1 7.6 | 60 40 | 0.184 |0.1722 | 0.3192 | 0.2409 | 0.1519 | 0.2220
2 | Central | NM3 | 7.6 | 60 40 | 0.1787 | 0.1864 | 0.3105 | 0.2362 | 0.1533 | 0.2202
3 7.0 | 30 22 1 0.2402 | 0.1452 | 0.3718 | 0.2578 | 0.1427 | 0.2465
4 74 170 22 | 0.1186 | 0.1912 | 0.2334 | 0.1573 | 0.1766 | 0.1795
5 | Northern | NM2 | 7.4 | 70 22 | 0.1159 | 0.2067 | 0.2265 | 0.1506 | 0.1835 | 0.1810
6 7.0 | 40 15 | 0.1496 | 0.1483 | 0.2727 | 0.1666 | 0.1551 | 0.1847
7 7.7 | 140 22 | 0.1184 | 0.1588 | 0.2036 | 0.1448 | 0.1436 | 0.1564
8 | southern | N1 |77 140 22| 0.1139 | 0.2006 | 0.1903 | 0.1359 | 0.155 | 0.1624
9 7.7 | 140 22 | 0.1133 | 0.196 | 0.1926 | 0.1356 | 0.155 | 0.1617
10 7.0 | 40 15 |0.1465 | 0.1232 | 0.2385 | 0.145 | 0.1244 | 0.1613
4.6 Comparison of Simulation-based Intensities with Ramirez-Guzman et al. (2015)

Results

Figure 28 shows the simulation-based estimates of the intensities of NM3 obtained by Ramirez-Guzman
et al. (2015) using the AKO7 and DC11 GMICE compared not with the observations but with the
predictions of the Bakun and Hopper (2004) intensity attenuation model for two magnitudes, 7.6 and 7.0.
These simulations show trends similar to those we see in even numbered Figures 20-26. Figure 29 shows
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the trend of MMI values with distance predicted from Sa at 1.0 and 2.0 seconds using DC11 and AKO7
and is comparable to Figure 28.

The trends for the other two events in Figures 20-26, NM2 (second row, northern segment) and NM1
(third and fourth rows, southern segment) are similar to those for NM3. We have already noted in Figure
4 that the attenuation with distance for NM3, the central thrust faulting event, is more dispersed in the
distance range of 200 to 1200 km than it is for the two strike-slip events NM1 and NM2. Despite this
difference between the events in the observations, we do not see this difference between the events in our
simulations. Similarly, we do not see evidence for this difference between NM3 (their Figure 12) and
NM1 (their Figure 9) in the results of Ramirez-Guzman et al. (2015). We conclude that the MMI
estimates derived for our 1D simulations of NM3, and those derived by Ramirez-Guzman et al. (2015)
from their 3D simulations of NM3, are not compatible with the observed intensities of that event.

100 200 300 400 500
Epicentral Distance(km)

Figure 28. MMI attenuation for NM3 events from simulations using the AKO7 and DC11 GMICEs
compared with the predictions of the Bakun and Hopper (2004) model for two magnitudes: 7.6 and 7.0.
(Source: Ramirez-Guzman et al., 2015).
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Figure 29. MMI attenuation for NM3 events (scenarios 1 through 3) from simulations using the DC11 for
T=1.0 sec and AKO7 for T = 2.0 sec Sa compared with the predictions of the AW07 model for two
magnitudes 7.6 and 7.0.

5. Conclusions

The historic 1811 and 1812 earthquakes in the New Madrid Seismic Zone have large uncertainties
whose values range between 7.1 and 8.0 (Petersen et al., 2008). Such uncertainty in the ground motion
level affects the seismic hazard at regional and local levels. For this reason, improvements in our
knowledge of the historic events’ magnitudes offer an alternative to previous work on seismic hazard in
the area.

This objective of this project is to provide improved estimates of the magnitudes of the three main events
of the sequence by comparing MMI values derived from broadband simulations with the observed
intensities. This research complements the work of Ramirez-Guzman et al. (2015) where they used 3D
simulations out to distances of about 500 km. Our research used 1D simulations out to 1,800 km to span
the entire region over which MMI intensities were reported.

Hough and Page (2011) corrected their intensities for site effects. We checked these corrected intensities
for bias using the Wald and Allen (2007) method of estimating Vs3, as a measure of site amplification.
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We found no residual dependence of the observed MMI on Vsz, after correcting the observed MMI for
distance using the Atkinson and Wald (2007) intensity prediction equation. We also found no evidence
for a regional dependence of residual intensity on distance from the New Madrid Seismic zone in the site
condition corrected MM data. We inspected the observed MMI data for the attenuation of intensities with
distance and compared them with Bakun and Hopper (2004) model 3 and the Atkinson and Wald (2007).
Predicted intensities from Atkinson and Wald (2007) show a better agreement with the observed MMI
data.

We used the Southern California Earthquake Center (SCEC) Broadband Simulation Platform (BBP) to
perform the simulations. We used two ground motion intensity correlation equations (GMICES) to
estimate MMI from the ground motion simulations so that they could be compared with the observed
intensities. These two GMICEs include the Atkinson and Kaka (2007) and Dangkua and Cramer (2011).
Our simulations consisted of multiple scenarios with two magnitudes for each branch of the New Madrid
fault. The two magnitudes for scenario events include a magnitude 7.0 and a larger magnitude for each
fault branch and we compared simulations of larger magnitudes with those of magnitude 7 scenario
events. For the larger magnitudes, the NM1 scenarios (December 16, 1811) had a magnitude of 7.7, the
NM2 scenarios (January 23, 1812) had a magnitude of 7.4, and the NM3 scenarios (February 7, 1812) had
a magnitude of 7.6. Although there is a large degree of discrepancy between the observed and simulated
intensities, there is a slight preference for the larger magnitudes, which are systematically higher than
those described by Hough and Page (2011) and comparable to those reported by Cramer and Boyd
(2014).

The dispersion of the observed MMI intensity for NM3, the central thrust faulting event, is much larger in
the distance range of 200 to 1200 km than it is for the two strike-slip events (NM1 and NM2). Despite
this difference between the events in the observations, we do not see this difference between the events in
our simulations. Similarly, we do not see evidence for this difference between NM3 and NM1 in the
results of Ramirez-Guzman et al. (2015). We conclude that there may be factors influencing the observed
MMI intensities of the three events that our simulations are not modeling.
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Appendix A. Historic Intensity Measures of Individual Experts Overlain on Vg3

data in CEUS
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plotted in (a) through (d). The average
value of intensity from the four
experts is plotted in the bottom figure.
Intensities are plotted over the shear
wave velocity map from the Wald and
Allen (2007).
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Figure A2. Intensity measures for the
NM2 event from four experts are
plotted in (a) through (d). The average
value of intensity from the four
experts is plotted in the bottom figure.
Intensities are plotted over the shear
wave velocity map from the Wald and
Allen (2007).

Hough and Page 2011 - NM2 - expert #2

Lattude

Lonpfiude

Hough and Page 2011 - NM2 - export #4

Lattude

T8 90 85 78
’“ﬂJﬂh and P.’. 2011 - NM2 - average 0“4‘l’.ﬂu

v

95 90 -85 -80 75

Longitude

44




Hough and Page 2011 - NM3J - expert #1

w0
!
5
%
3
12
95 90 8 0 78
Longitude

Hough and Page 2011 - NM3 - expert #3

)

95 90 -85 80 78
Longltude

Figure A3. Intensity measures for the
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plotted in (a) through (d). The average
value of intensity from the four
experts is plotted in the bottom figure.
Intensities are plotted over the shear
wave velocity map from the Wald and
Allen (2007).
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(scenario 3). The left panel shows the distribution of average rake angles on each sub-fault over the fault
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superimposed, and the right panel shows the distribution of slip rise time.
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Figure B3. Kinematic rupture model developed for northern branch of New Madrid fault with M=7.4
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superimposed, and the right panel shows the distribution of slip rise time.
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Figure B7. Kinematic rupture model developed for southern branch of New Madrid fault with M=7.7
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Figure B8. Kinematic rupture model developed for southern branch of New Madrid fault with M=7.7
(scenario 9). The left panel shows the distribution of average rake angles on each sub-fault over the fault
plane. The middle panel shows the slip distribution with rupture front contours at 1 s intervals
superimposed, and the right panel shows the distribution of slip rise time.
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Figure B9. Kinematic rupture model developed for southern branch of New Madrid fault with M=7.0
(scenario 10). The left panel shows the distribution of average rake angles on each sub-fault over the fault
plane. The middle panel shows the slip distribution with rupture front contours at 1 s intervals
superimposed, and the right panel shows the distribution of slip rise time.
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Appendix C. Comparison of Estimated MMI Intensities from Simulations with
Observations

Even numbered figures show comparison of intensities estimated from simulations with observed
intensities, and odd numbered figures show difference residuals between estimated and observed
intensities. The figures are shown for each of two GMICE (AKOQ07 and DC11), and for each GMICE there
are separate comparisons for intensities estimated from PGA, PGV and response spectral periods at 0.3,
1.0, and 2.0 seconds.
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Figure C1. Converted MMI values for Scenarios 1 through 10 using simulated PGAs and the AKOQ7
GMICE where magnitude is considered unknown. The average and one standard deviation of the
converted MMI values for the geometric mean of the two horizontal components are calculated at each
site over multiple source realizations and shown with filled circle and vertical bars. The empirical MMI
values using the AWO07 GMPE plus and minus one standard deviation are shown with solid and dashed
lines. The observed MM s for the three New Madrid events are plotted in magenta, green, and black. The
vertical bars in the observations correspond to the standard deviation of the average (as interpreted by the
four experts) MMI values.
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Figure C2. Residuals associated with Figure C1 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWOQ7 attenuation model (E,).
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Figure C3. Converted MMI values for Scenarios 1 through 10 using simulated 0.3 sec spectral
accelerations and the AKO7 GMICE where magnitude is considered unknown. The average and one
standard deviation of the converted MMI values for the geometric mean of the two horizontal components
are calculated at each site over multiple source realizations and shown with filled circle and vertical bars.
The empirical MMI values using the AW07 GMPE plus and minus one standard deviation are shown
with solid and dashed lines. The observed MMIs for the three New Madrid events are plotted in magenta,
green, and black. The vertical bars in the observations correspond to the standard deviation of the average

(as interpreted by the four experts) MMI values.
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Figure C4. Residuals associated with Figure C3 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between

observed intensities and prediction from the AWO7 attenuation model (E,).
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Figure C5. Converted MMI values for Scenarios 1 through 10 using simulated 1.0 s spectral
accelerations and the AKO7 GMICE where magnitude is considered unknown. The average and one
standard deviation of the converted MMI values for the geometric mean of the two horizontal components
are calculated at each site over multiple source realizations and shown with filled circle and vertical bars.
The empirical MMI values using the AW07 GMPE plus and minus one standard deviation are shown
with solid and dashed lines. The observed MMIs for the three New Madrid events are plotted in magenta,
green, and black. The vertical bars in the observations correspond to the standard deviation of the average
(as interpreted by the four experts) MMI values.
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Figure C6. Residuals associated with Figure C5 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
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observed intensities and prediction from the AWO7 attenuation model (E;).
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Figure C7. Converted MMI values for Scenarios 1 through 10 using simulated PGVs and the DC11
GMICE. The average and one standard deviation of the converted MMI values for the geometric mean of
the two horizontal components are calculated at each site over multiple source realizations and shown
with filled circle and vertical bars. The empirical MMI values using the AW07 GMPE plus and minus one
standard deviation are shown with solid and dashed lines. The observed MMIs for the three New Madrid
events are plotted in magenta, green, and black. The vertical bars in the observations correspond to the
standard deviation of the average (as interpreted by the four experts) MMI values.
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Figure C8. Residuals associated with Figure C7 showing the difference between observed intensities and
median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to the
root mean square (RMS) error between observed and simulated intensities (E;), and RMS error between
observed intensities and prediction from the AWO7 attenuation model (E,).
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Figure C9. Converted MMI values for Scenarios 1 through 10 using simulated 0.3 s spectral
accelerations and the DC11 GMICE. The average and one standard deviation of the converted MMI
values for the geometric mean of the two horizontal components are calculated at each site over multiple
source realizations and shown with filled circle and vertical bars. The empirical MMI values using the
AWO07 GMPE plus and minus one standard deviation are shown with solid and dashed lines. The
observed MMIs for the three New Madrid events are plotted in magenta, green, and black. The vertical
bars in the observations correspond to the standard deviation of the average (as interpreted by the four
experts) MMI values.
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Figure C10. Residuals associated with Figure C9 showing the difference between observed intensities
and median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to
the root mean square (RMS) error between observed and simulated intensities (E;), and RMS error
between observed intensities and prediction from the AWO07 attenuation model (E,).
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Figure C11. Converted MMI values for Scenarios 1 through 10 using simulated 2.0 s spectral
accelerations and the DC11 GMICE. The average and one standard deviation of the converted MMI
values for the geometric mean of the two horizontal components are calculated at each site over multiple
source realizations and shown with filled circle and vertical bars. The empirical MMI values using the
AWO07 GMPE plus and minus one standard deviation are shown with solid and dashed lines. The
observed MMIs for the three New Madrid events are plotted in magenta, green, and black. The vertical
bars in the observations correspond to the standard deviation of the average (as interpreted by the four
experts) MMI values.
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Figure C12. Residuals associated with Figure C11 showing the difference between observed intensities
and median predicted ones for NM1, NM2, and NM3 events. The errors listed in the plots legends refer to
the root mean square (RMS) error between observed and simulated intensities (E;), and RMS error
between observed intensities and prediction from the AWO07 attenuation model (E).
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